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ABSTRACT
We complete our study on the uncertainties in position and momentum associated with the semiclassical Hagedorn wave packets by first
filling in a technical gap in the dynamics of bound states for isochronous potentials. We then consider scattered states and show that, if
the packet is reflected from the potential or transmitted through a symmetric potential, then a minimal uncertainty “initial” state cannot in
general lead to a “final” state with minimal uncertainty, and we give an explicit relationship for the difference in terms of a characteristic time
associated with classical trajectories. We also characterize the behavior of the uncertainty product in the case where the underlying classical
dynamics lead to capture by the potential.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5096954

I. INTRODUCTION
This work completes a previous study1 by the authors on the dynamics of the position and momentum uncertainties for semiclassical

wave packets. We extend our previous results on bound states to scattered and captured states, and we close a gap in a result on the attaining
of minimal uncertainty for bound states at energies where the period is locally independent of the energy.

The wave packets under consideration are the Hagedorn2 states {φn}.

Definition 1. For n ∈ Z+
∪ {0}, a, η ∈ R, h̵ > 0, and A, B ∈ C satisfying

AB + AB = 2, (1)

we let

φn(A, B, h̵, a, η, x) = 2−n/2
(n!)−1/2

(πh̵)−1/4A−(n+1)/2An/2

×Hn(h̵−1/2
∣A∣

−1
(x − a))

× exp{−
1

2h̵
BA−1

(x − a)2 +
i
h̵
η(x − a)},

where Hn is the nth order Hermite polynomial.
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With ⟨⋅, ⋅⟩ and ∥⋅∥ denoting the inner product and norm for L2
(R, dx), given ψ(x) ∈ L2

(R, dx) normalized so that

⟨ψ,ψ⟩ = ∥ψ∥2
= ∫

∞

−∞

∣ψ(x)∣2 dx = 1,

the expectations ⟨x⟩ and ⟨p⟩ of position and momentum are given by

⟨x⟩ = ⟨ψ, xψ⟩

and

⟨p⟩ = ⟨ψ, (−ih̵
∂

∂x
)ψ⟩.

The uncertainties in these quantities are

∆x =
√

⟨ψ, (x − ⟨x⟩)2ψ⟩

and

∆p =
√

⟨ψ, (−ih̵
∂

∂x
− ⟨p⟩)2ψ⟩.

The uncertainty principle

∆x∆p ≥
h̵
2

(2)

follows, and if equality is achieved, we will say that the state ψ is of minimal uncertainty.
The states 'n(A, B, h̵, a, η, x) as defined above are normalized in L2

(R, dx) and have expected position and momentum

⟨x⟩ = a and ⟨p⟩ = η

and uncertainties

∆x =
√

h̵(n +
1
2
)∣A∣ and ∆p =

√

h̵(n +
1
2
)∣B∣.

Consistent with (2), it follows easily from condition (1) that ∣A∣∣B∣ ≥ 1.

II. BOUND STATES
The Hagedorn states provide semiclassical solutions for the Schrödinger equation. For example, suppose that V ∈ C2

(R,R) is bounded
from below and such that ∣V(x)∣ ≤ CeMx2

for some constants C and M so that H = −
̵h2

2
∂2

∂x2 + V(x) generates a unitary propagator U(t)
= e−itH /̵h on L2

(R, dx). Let

φ(h̵, x, t) = eiS(t)/̵hφ0(A(t), B(t), h̵, a(t), η(t), x)

= (πh̵)−1/4A(t)−1/2 exp{−
1

2h̵
B(t)A(t)−1

(x − a(t))2

+
i
h̵
η(t)(x − a(t)) +

i
h̵

S(t)},

where {a(t), η(t), A(t), B(t), S(t)} is the solution of

ȧ(t) = η(t), (3)

η̇(t) = −V′
(a(t)), (4)

Ȧ(t) = iB(t), (5)

i̇B(t) = −V′′
(a(t))A(t), (6)

Ṡ(t) =
1
2
η(t)2

− V(a(t)) (7)
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for some initial condition {a(0), η(0), A(0), B(0), S(0)} ∈ R×R×C×C× {0} with A(0)B(0) + A(0)B(0) = 2. Let the branch of the square
root of A(t) be determined by continuity in t starting on the principle branch at t = 0. Then,2

∥e−itH/̵hφ(h̵, ⋅, 0) − φ(h̵, ⋅, t)∥ = O(h̵1/2
)

for t in any compact interval [0, T]. Note that (1) is conserved, that is,

A(t)B(t) + A(t)B(t) = 2

for t ≥ 0 and that this particular asymptotic solution '(h̵, x, t) has expected position and momentum

⟨x⟩ = a(t) and ⟨p⟩ = η(t)

and uncertainties

∆x =

√
h̵
2
∣A(t)∣ and ∆p =

√
h̵
2
∣B(t)∣.

We recall our earlier results1 on the evolution of A(t) and B(t).

Proposition 2. Suppose V ∈ C2
(R,R). Let {a(t), η(t), A(t), B(t)} be the solution of (3)–(6) for some initial condition {a0, η0, A0, B0}

∈ R × R × C × C with A0B0 + A0B0 = 2 and such that a0 is between two adjacent roots x− < x+ of V(x) = E with V′(x−) < 0 and V′(x+) > 0.
Let τ(E) denote the period of a(t) and η(t). Then, if τ′(E) = 0, A(t) and B(t) are periodic with period τ, while if τ′(E) ≠ 0, A(t) and B(t) have the
form

A(t) = A1(t) + tA2(t),
B(t) = B1(t) + tB2(t)

with A1, A2, B1, and B2 periodic with period τ.

Proposition 3. Under the hypothesis of Proposition 2, given any T > 0, there is a time t > T such that |A(t)B(t)| = 1.

Proposition 4. Under the hypothesis of Proposition 2, if τ′(E) ≠ 0, then there exists T > 0 such that, for any t0 > T, the uncertainty product
is minimal (∣A(t)B(t)∣ = 1) for at least four times t in the interval [t0, t0 + τ].

Proposition 2 is a result of Floquet theory applied to the system

d
dt

[
A(t)
iB(t)

] = [
0 1

−V′′
(a(t)) 0

][
A(t)
iB(t)

],

which has the fundamental matrix solution

Φ(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂a
∂a0

(t)
∂a
∂η0

(t)

∂η
∂a0

(t)
∂η
∂η0

(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and monodromy matrix

Φ(τ) =
⎡
⎢
⎢
⎢
⎢
⎣

1 − η0τ′(E)V′
(a0) −η2

0τ′(E)

V′
(a0)

2τ′(E) 1 + η0τ′(E)V′
(a0)

⎤
⎥
⎥
⎥
⎥
⎦

.

Proposition 3 follows from either the periodicity of A(t) and B(t) (if τ′(E) = 0) or the iteration of the monodromy matrix. Our immediate goal
is to extend Proposition 4 to the case where τ′(E) = 0.
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A. Isochronous potentials
The Proof of Proposition 4 requires the hypothesis that the energy E = 1

2η
2
0 + V(a0) is such that τ′(E) ≠ 0. Since the conclusion of the

proposition is true for the harmonic oscillator (V(x) = 1
2ω

2x2) which famously has period independent of energy, it is certainly reasonable to
question whether this hypothesis is necessary. We will show that indeed it is, that is, there are potentials V and energies E such that τ′(E) = 0
and the uncertainty product is minimal only twice in any interval [t0, t0 + τ].

First, let us verify that Proposition 4 is true for the potential V(x) = 1
2ω

2x2 which has τ′(E) = 0 for all E > 0. We set ω = 1 for convenience.
The system (5) and (6) has solution

A(t) = A0 cos t + iB0 sin t,
B(t) = B0 cos t + iA0 sin t

with period τ = 2π. If we set Γ = B0/A0, then, from (1), we have Re(Γ) = 1/∣A0∣
2
> 0 and

A0 =
1

√
Re(Γ)

eiα, (8)

B0 =

√
Re(Γ)2 + Im(Γ)2

√
Re(Γ)

ei(α+arctan(Im(Γ)/Re(Γ)) (9)

for some α ∈ [0, 2π). From the Proof1 of Proposition 3, we know that ∣A(t)B(t)∣ = 1 if and only if d
dt ∣A(t)∣ = 0. Some algebra now shows that,

for this example, d
dt ∣A(t)∣ = 0 if and only if

(Re(Γ)2 + Im(Γ)2
− 1) sin 2t = 2 Im(Γ) cos 2t. (10)

Now, if Im(Γ) = 0 and Re(Γ) = 1, then (10) is true for all t. If Im(Γ) = 0 and Re(Γ) ≠ 1, then (10) is true when sin 2t = 0, that is, four times
per period. If Im(Γ) ≠ 0, then (10) is true at times t such that either cos 2t = 0 (if Re(Γ)2 + Im(Γ)2 = 1) or

tan 2t =
2 Im(Γ)

Re(Γ)2 + Im(Γ)2 − 1

(if Re(Γ)2 + Im(Γ)2
≠ 1), so d

dt ∣A(t)∣ = 0 occurs four times per period.
We now give heuristic, numeric, and finally analytic evidence for the existence of potentials for which τ′(E) = 0 for one or more values

of E, yet d
dt ∣A(t)∣ = 0 occurs fewer than four times per period. We begin with a “half-oscillator,” namely, V(x) = 1

2 x2 on x > 0 with a reflecting
boundary condition at x = 0. The explicit solution of (3) and (4) with a0 > 0 and a reflection at the origin is

a(t) = ∣a0 cos t + η0 sin t∣,
η(t) = (η0 cos t − a0 sin t)sgn(a0 cos t + η0 sin t),

which has period π. Setting

A(t) =
∂a
∂a0

A0 + i
∂a
∂η0

B0 = (A0 cos t + iB0 sin t)sgn(a0 cos t + η0 sin t)

and following the argument above, using (8) and (9) leads to exactly Eq. (10). However, now the underlying period is half that of before, so
we conclude d

dt ∣A(t)∣ = 0 twice per period. Of course, this example violates more of our hypotheses than we like.
For α ∈ (0, 1), the potential3

V(x) =
2 + (1 + α)(x2 + 2x) − 2(x + 1)

√
1 + αx(x + 2)

2(1 − α)2 (11)

on (−∞, ∞) is isochronous with τ(E) = 2π for all E > 0. From numerical experiments with various initial conditions, it seems that the
uncertainty product is usually minimal four times per period, but for values of α near one and certain initial conditions {a0, η0, A0, B0} (e.g.,
α = 0.99, {a0, η0, A0, B0} = {0, 1, 1,

√
2e−iπ/4

}), the numerical solution of (3)–(6) reveals that the uncertainty product is minimal only twice
per period.

As α→ 1, the potential (11) converges3 on (0, ∞) to
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V(x) =
1
2

x2 +
1

2x2 .

We can explicitly solve Eqs. (3)–(6) for this potential. Using a standard trick4 for Ermakov equations, we have

a(t) =
1

√
2a0

√

a4
0 + a2

0η2
0 + 1 + (a4

0 − a2
0η2

0 − 1) cos 2t + 2a3
0η0 sin 2t

for a0 > 0 and we can construct η(t), A(t), and B(t) by differentiating this with respect to time or initial conditions. From this, we can
construct exact solutions for which the uncertainty product is minimal only twice in any period. The initial conditions {a0, η0, A0, B0} = {2, 0,
1, 1} provide once such example, where τ = π,

∣A(t)∣ =
1
8

√
995 + 1020 cos 2t + 33 cos 4t

17 + 15 cos 2t
,

and d
dt ∣A(t)∣ has zeroes at t = nπ/2 for integer n. Introducing a smooth cutoff at some appropriate ε > 0 does not affect this solution {a, η, A,

B} for energies E < V (ε), so we can use this example to construct a potential satisfying the assumptions of Proposition 2 with {a, η, A, B} such
that minimality of the uncertainty product occurs only twice in any period.

Therefore, the assumption τ′(E) ≠ 0 is indeed necessary to ensure minimality of the uncertainty product at least four times per period
and we can extend Proposition 4 to include the τ′(E) = 0 case. In this case, ∣A(t)∣ = ∣A(t + τ)∣, so we know by the mean value theorem
that d

dt ∣A(t)∣ = 0 at least once per period. Letting t∗ be any such time, a further application of the mean value theorem gives d
dt ∣A(t)∣ = 0

somewhere between t∗ and t∗ + τ. Hence, we can replace Proposition 4 by the following:

Proposition 5. Under the hypothesis of Proposition 2, if τ′(E) ≠ 0, then there exists T > 0 such that, for any t0 > T, the uncertainty product
is minimal (∣A(t)B(t)∣ = 1) for at least four times t in the interval [t0, t0 + τ]. If τ′(E) = 0, then the uncertainty product is minimal at least twice
during any period.

III. SEMICLASSICAL SCATTERING
We now consider a semiclassical scattering process that maps a state asymptotic to a Gaussian wave packet ψ− at t = −∞ into a similar

state ψ+ at t = ∞. Our focus is on the associated uncertainties ∆x± and ∆p± in position and momentum, respectively, of these states. We
show that, if the packet is reflected from the potential or transmitted through a symmetric potential, then a minimal uncertainty “initial” state
(∆x−∆p− = h̵/2) cannot in general lead to a “final” state with minimal uncertainty, that is, ∆x+∆p+ > h̵/2, and we give an explicit relationship
for the difference in terms of a characteristic time. We also analyze the behavior of the uncertainty product in the case where the underlying
classical dynamics lead to capture by the potential.

We consider the classical Hamiltonian

H(a, η) =
1
2
η2 + V(a)

on R2 and its quantum counterpart

H(h̵) = −
h̵2

2
∂2

∂x2 + V(x) = H0(h̵) + V(x)

on L2
(R) for “short range” potentials V ∈ C3

(R) satisfying

∣
djV
dxj (x)∣ ≤ dj(1 + ∣x∣)−1−j−ν (12)

for some constants dj, j ∈ {0, 1, 2, 3}, and some ν > 0.
We first collect some results on one-dimensional classical and quantum scattering. From the work of Hagedorn2 and the references

therein,5–9 for all h̵ > 0, H(h̵) is essentially self-adjoint on C∞0 (R), the wave operators

Ω±
(h̵) = s − lim

t→∓∞
eitH(̵h)/̵he−itH0(

̵h)/̵h

exist and are asymptotically complete, and the quantum S-matrix given by S(h̵) = Ω−(h̵) ∗ Ω+(h̵) is unitary. Given (a−, η−) ∈ R2 with η− ≠ 0,
there exists a unique solution (a(t), η(t)) of the classical system

ȧ(t) = η(t),

η̇(t) = −V′
(a(t))

such that
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lim
t→−∞

∣a(t) − a− − tη−∣ = 0 (13)

and

lim
t→−∞

∣η(t) − η−∣ = 0. (14)

On the other hand, there is a closed set E ⊂ {(a−, η−) ∈ R2 : η− ≠ 0} of measure zero such that for (a−, η−) ∉ E there exist a+ and η+ ≠ 0 such
that

lim
t→∞

∣a(t) − a+ − tη+∣ = 0 (15)

and

lim
t→∞

∣η(t) − η+∣ = 0. (16)

The classical S-matrix Scl : R2
/E→ R2 is defined by the mapping

Scl(a−, η−) = (a+, η+).

From Theorem 1.2 of Hagedorn,2 given (a−, η−) ∈ R2
/E and A−, B− ∈ C satisfying

A−B− + A−B− = 2,

there exist a+, η+, S+ ∈ R with η+ ≠ 0, A+, B+ ∈ C, and a unique solution of the system (3)–(7) such that Eqs. (13)–(16) hold along with the
following:

lim
t→±∞

∣A(t) − A± − itB±∣ = 0,

lim
t→±∞

∣B(t) − B±∣ = 0,

lim
t→−∞

∣S(t) −
1
2

tη2
−∣ = 0,

lim
t→∞

∣S(t) − S+ −
1
2

tη+
2
∣ = 0,

A(t) =
∂a(t)
∂a−

A− + i
∂a(t)
∂η−

B−,

B(t) =
∂η(t)
∂η−

B− − i
∂η(t)
∂a−

A−,

A(t)B(t) + A(t)B(t) = 2, (17)

A+ =
∂a+

∂a−
A− + i

∂a+

∂η−
B−, (18)

B+ =
∂η+

∂η−
B− − i

∂η+

∂a−
A−, (19)

and

A+B+ + A+B+ = 2. (20)

The main result of Theorem 1.2 of Ref. 2 is that, for any λ ∈ (0, 1
2), if we consider the coherent state '0, namely,

φ0(A, B, h̵, a, η, x) = (πh̵)−1/4A−1/2 exp{−
1

2h̵
BA−1

(x − a)2 +
i
h̵
η(x − a)},

then, with the appropriate choice for the branch of the square root of A+,

∥Sφ0(A−, B−, h̵, a−, η−, ⋅) − eiS+/
̵hφ0(A+, B+, h̵, a+, η+, ⋅)∥ = O(h̵λ).
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Remark 6. Hagedorn2 proved his Theorem 1.2 for spatial dimension n ≥ 3. Rothstein10 provided the necessary estimates for the extension
to one and two dimensions.

A. The asymptotic uncertainties
We now turn our attention to understanding the effect of scattering on the uncertainties, that is, we begin our focus on the relation-

ship (A−, B−) → (A+, B+). We consider three separate physical cases, namely, reflection from, transmission through, and capture by the
potential. For the first two cases, we will consider a− and η− ≠ 0 such that (a−, η−) ∈ R2

/E. The classical S-matrix Scl : R/E → R is the
mapping

Scl(a−, η−) = (a+, η+),

and its Jacobian matrix

Φ+ = Φ+(a−, η−) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂a+

∂a−
∂a+

∂η−
∂η+

∂a−
∂η+

∂η−

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)

serves to scatter the uncertainties in the sense that
⎡
⎢
⎢
⎢
⎣

A+

iB+

⎤
⎥
⎥
⎥
⎦
= Φ+(a−, η−)

⎡
⎢
⎢
⎢
⎣

A−

iB−

⎤
⎥
⎥
⎥
⎦

.

By conservation of energy and limt→∞V(a(t)) = 0,

η+ = ±η−,

so

∂η+

∂η−
= ±1,

∂η+

∂a−
= 0.

Then, Eqs. (18)–(20) with A− = B− = 1 imply

∂a+

∂a−
= ±1,

and therefore,

Φ+ = Φ+(a−, η−) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

±1
∂a+

∂η−
0 ±1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and

A+ = ±A− + i
∂a+

∂η−
B−,

B+ = ±B−.

We first consider reflection off the potential (η+ = −η−) followed by transmission through the potential (η+ = η−). We then will allow (a−, η−)
in the exceptional set and study the trapping of particles by the potential.

1. Reflection
We consider a particle reflecting off the potential. For an incoming particle,

a(t) ∼ a− + tη−,
η(t) ∼ η−

as t → −∞ with (a−, η−) ∈ R2
/E and energy E = 1

2η
2
− < maxx∈R V(x), we define the arrival time τ = τ(a−, η−) by η(τ) = 0, that is,

J. Math. Phys. 60, 052106 (2019); doi: 10.1063/1.5096954 60, 052106-7

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

η(a−, η−, τ(a−, η−)) = 0.

The hypotheses on V are sufficient to guarantee continuity of ∂η
∂a−

, ∂η
∂η−

, and ∂η
∂t ; hence the implicit function theorem guarantees that τ is

well-defined and has continuous partial derivatives with respect to a− and η−. We exploit the fact that the phase space trajectory (a(t), η(t))
is symmetric about the arrival time, that is,

a(τ + t) = a(τ − t),
η(τ + t) = −η(τ − t)

to obtain, as t →∞,

a+ + (τ + t)η+ ∼ a(τ + t) = a(τ − t) ∼ a− + (τ − t)η−,

so

a+ = a− + 2τη−
and the classical scattering matrix is

Scl(a−, η−) = (a+, η+) = (a− + 2τη−,−η−). (22)

The matrix Φ+ defined by (21) is then

Φ+ =

⎡
⎢
⎢
⎢
⎢
⎣

−1 2
∂

∂η−
(τη−)

0 −1

⎤
⎥
⎥
⎥
⎥
⎦

. (23)

Note that
∂a+

∂a−
= −1⇒

∂τ
∂a−

= −
1
η−

,

so

τ(a−, η−) = F(η−) −
a−
η−

for some function F and therefore

∂

∂a−
(

∂

∂η−
(τη−)) = 0,

so Φ+ is a function of η− alone.
If we now consider scattering a minimal uncertainty state, that is, we consider a state of the form '0(A−, B−, h̵, a−, η−, x) with

∣A−∣∣B−∣ = 1,

then from the above and the fact that, from (1),

∣A−∣∣B−∣ = ∣A−B−∣ =
√

1 + Im(A−B−)2 ⇒ Im(A−B−) = 0,

with some algebra, we obtain

∣A+∣∣B+∣ =

¿
Á
ÁÀ1 + 4(

∂

∂η−
(τη−))

2

∣B−∣2,

and hence, we see that the semiclassically scattered state

φ0(A+, B+, h̵, a+, η+, x)

is also of minimal uncertainty if and only if η− = η∗− satisfies

(
∂

∂η−
(τη−))∣

η∗
−

= 0. (24)
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We collect these results as a Proposition.

Proposition 7. With the assumptions and definitions in Secs. III and III A, for (a−, η−) ∈ R2
/E with ∣η−∣ < maxx∈R V(x), define τ = τ(a−,

η−) by

η(a−, η−, τ(a−, η−)) = 0.

Then,

Φ+ = Φ+(η−) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1 2
∂

∂η−
(τη−)

0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and

A+ = −A− + 2i(
∂

∂η−
(τη−))B−,

B+ = −B−.

Furthermore, if ∣A−∣∣B−∣ = 1, then ∣A+∣∣B+∣ = 1 if and only if Φ+ = −I, that is, the value of η_ is such that ∂
∂η−

(τη−) = 0.

a. An example: The Morse potential. We explicitly work out the details above for the Morse potential

V(x) = D(1 − e−α(x−x0))
2
−D,

where D > 0, α > 0, and x0 are constants. For convenience, we set x0 = 0.
This potential does not satisfy our decay assumption 12, but this is easily overcome since we can restrict ourselves to classical and

semiclassical scattering for positive energies less than some Emax and introduce a sufficiently smooth and rapidly decaying cutoff to V(x) for
x < amin, where V(amin) = Emax. The classical and semiclassical scattering for particles at positive energy E < Emax incoming from the right will
not be affected.

From the known explicit classical dynamics for this potential,11 we can deduce that, given a− ∈ R and η− < 0, the solution of (3) and (4)
that satisfies

a(t) ∼ a− + η−t,
η(t) ∼ η−

as t → −∞ is

a(t) =
1
α

log(2δ cosh(α(a− + tη−) − log(δ)) −
2D
η2
−

), (25)

η(t) =
2δη− sinh(α(a− + tη−) − log(δ))

2δ cosh(α(a− + tη−) − log(δ)) −
2D
η2
−

, (26)

where, for the sake of notation, we have set

δ =
√

D
η2
−

√

D +
1
2
η2
−

.

It follows then by taking limits of (25) and (26) as t →∞,

a(t) ∼ a+ + η+t,
η(t) ∼ η+,

where η+ = −η− and

a+ = −a− +
1
α

log(
D
η4
−

(D +
1
2
η2
−)).
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The classical S-matrix Scl : {(a−, η−) : η− < 0} → R2 is then

Scl(a−, η−) = (a+, η+) = (−a− +
1
α

log(
D
η4
−

(D +
1
2
η2
−)),−η−).

By explicit calculation,

A+ =
∂a+

∂a−
A− + i

∂a+

∂η−
B− = −A− − i

2(4D + η2
−)

αη−(2D + η2
−
)

B−,

B+ =
∂η+

∂η−
B− − i

∂η+

∂a−
A− = −B−,

and the matrix Φ+ defined in (21) is

Φ+ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂a+

∂a−
∂a+

∂η−
∂η+

∂a−
∂η+

∂η−

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2(4D + η2

−)

αη−(2D + η2
−
)

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

To see that these results agree with (22) and (23), first note that solving η(t) = 0 gives

τ(a−, η−) =
1
αη−

log(δ) −
a−
η−

=
1

2αη−
log(

D
η4
−

(D +
1
2
η2
−)) −

a−
η−

,

so

a− + 2τη− = −a− +
1
α

log(
D
η−4 (D +

1
2
η2
−))

and

−2
∂

∂η−
(τ(a−, η−)η−) = −2

∂

∂η−
(

1
2α

log(
D
η4
−

(D +
1
2
η2
−)) − a−)

=
2(4D + η2

−)

αη−(2D + η2
−
)

.

2. Transmission and symmetric potentials
In the case of transmission through the potential, we have η+ = η− and

Φ+ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
∂a+

∂η−
0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

For an incoming particle

a(t) ∼ a− + tη−,
η(t) ∼ η−

as t → −∞ with (a−, η−) ∈ R2
/E and energy E = 1

2η
2
− > maxx∈R V(x), we define the arrival time τ = τ(a−, η−) in this case by a(τ) = 0, that

is,

a(a−, η−, τ(a−, η−)) = 0.
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The hypotheses on V are sufficient to guarantee the continuity of ∂a
∂a−

, ∂a
∂η−

, and ∂a
∂t ; hence, the implicit function theorem guarantees that τ is

well-defined and has continuous partial derivatives with respect to a− and η−.
There is not much more we can say here in general. If, however, we consider an even potential (V(−x) = V(x)) then we can again exploit

a symmetry for

a(a−, η−, τ + t) = −a(a−, η−, τ − t)

and

η(a−, η−, τ + t) = η(a−, η−, τ − t)

implying

a+ = −a− − 2τη−,

so the classical scattering matrix is

Scl(a−, η−) = (a+, η+) = (−a− − 2τη−, η−)

and

Φ+ =

⎡
⎢
⎢
⎢
⎢
⎣

1 −2
∂

∂η−
(τη−)

0 1

⎤
⎥
⎥
⎥
⎥
⎦

.

Again, we see that Φ+ is independent of a−, and if we consider scattering a minimal uncertainty state '0(A−, B−, h̵, a−, η−, x) with

∣A−∣∣B−∣ = 1,

we obtain

∣A+∣∣B+∣ =

¿
Á
ÁÀ1 + 4(

∂

∂η−
(τη−))

2

∣B−∣2,

and therefore, the semiclassically scattered state '0(A+, B+, h̵, a+, η+, x) is also of minimal uncertainty if and only if η− = η∗− satisfies (24) with
τ defined as in this section. In the case of an even potential, we can combine the results of this section with those of the previous to obtain the
following:

Proposition 8. Suppose V = V(∣x∣) satisfies (12). With the assumptions and definitions in Secs. III and III A, for (a−, η−) ∈ R2
/E, define

τ = τ(a−, η−) as the time of closest approach to the origin, that is,

d
dt

∣a(a−, η−, t) ∣2∣
t=τ(a− ,η−)

= 2a(a−, η−, τ(a−, η−))η(a−, η−, τ(a−, η−)) = 0.

Then,

Φ+ = Φ+(η−) = ±
⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −2
∂

∂η−
(τη−)

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where the upper sign is chosen in the case of transmission and the lower in the case of reflection. Furthermore, if ∣A−∣∣B−∣ = 1, then ∣A+∣∣B+∣ = 1
if and only if Φ+ = ±I, that is, if and only if η− is such that ∂

∂η−
(τη−) = 0.

Since τ is given in terms of the asymptotic positions and momenta by

τ = −
1
2
(

a−
η−

+
a+

η+
),
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we see that τ is related to the notion of classical global time delay12,13 T,

T =
a−
η−

−
a+

η+

= 2(τ +
a−
η−

);

hence,

2
∂

∂η−
(τη−) =

∂

∂η−
(Tη−).

The case where 2 ∂
∂η−

(τη−) = ∓ ∂a+
∂η−

= ∂
∂η−

(Tη−) = 0 for some value(s) of η− is uncommon. We remark, however, that this condition holds
throughout for transmission in the trivial case V (x) ≡ 0 and, with some obvious modification in the definition of τ, for reflection off an
otherwise constant vertical potential step.

3. Capture by the potential
Finally, for completeness, we will consider the case where the classical particle is captured, for example, at the top of a potential hill (see,

for example, Remark 5 in the work of Hagedorn2 or Appendix 2 in the work of Simon9). We first document the long-time asymptotics of A(t)
and B(t) if we take a− and η− ≠ 0 in the exceptional set and such that the particle comes to rest at the top of a hill, i.e., such that (a+, 0) is an
(unstable) equilibrium solution of the classical motion. In particular, V′(a+) = 0 and V′′(a+) < 0. Linearizing (3) and (4) about (a+, 0) and
setting

λ =
√
−V′′(a+)

gives

a(t) ∼ a+ + ce−λt ,

η(t) ∼ −λce−λt

for some constant c as t →∞. Setting V′′(a(t)) = −λ in (5) and (6) gives

A(t) ∼ c1 cosh(λt) +
i
λ

c2 sinh(λt),

B(t) ∼ c2 cosh(λt) − iλc1 sinh(λt)

for some constants c1 and c2 which, by (17), satisfy

c1c2 + c1c2 = 2.

Both ∣A(t)∣ and ∣B(t)∣ then must grow exponentially and the uncertainty product follows suit

∣A(t)B(t)∣ ∼
e2λt

4λ
∣λc1 + ic2∣

2

as t →∞.
We now consider generalizing to the case where more derivatives vanish at the top of the hill and to the case where the particle is captured

on a “ledge.” With the particle incident from the right, we therefore wish to consider the higher order Taylor expansion for V about a+ with
the first nonzero term being

1
n!

V(n+1)
(a+)(a(t) − a+)

n

with n ≥ 2 and V (n+1) (a+) < 0. With

λ =
√

−
1
n!

V(n+1)(a+)

and y(t) = a(t) − a+, this leads us to study the nonlinear ordinary differential equation
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ÿ = λ2yn (27)

with the asymptotic conditions

lim
t→∞

y(t) = 0, (28)

lim
t→∞

ẏ(t) = 0. (29)

Rewriting (27) as

ẏ
dẏ
dy

= λ2yn,

we obtain

ẏ2

2
= λ2 yn+1

n + 1
+ const. (30)

From (28) and (29), the constant in (30) must be zero and we can separate the resulting equation for y(t) and obtain the solution

y(t) = (
2(n + 1)

λ2(n − 1)2(t + c)2 )

1
n − 1 ,

where c is an arbitrary constant, and we have used the facts that y(t) > 0 and ẏ(t) < 0 to determine a branch.
If, for the sake of notation, we let

Λn =
⎛

⎝

2(n + 1)!
∣V(n+1)(a+)∣(n − 1)2

⎞

⎠

1
n − 1

,

then the (a, η) dynamics near the capture point look like

a(t) ∼ a+ +
Λn

t2/(n−1) ,

η(t) ∼ −
2Λn

(n − 1)t(n+1)/(n−1)

as t →∞. The approximate ODE for A(t) is then

Ä(t) − αnt−2A(t) = 0,

where

αn =
2n(n + 1)
(n − 1)2 ;

hence,

A(t) = O(t(1+
√

1+4αn)/2)

as t →∞, and therefore, the uncertainty product scales as

∣A(t)B(t)∣ ∼ O(t(
√

1+4αn))

as t →∞.
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