$\begin{array}{c} CSCI \ 3030 \ {\tt Mathematical Structures for Computer Science} \\ Section \ A \end{array}$

Instructor: Dr. Predrag Punoševac

Exam 1

Student Name:_____ Student ID#:_____

Each problem is worth 5 points. Give a complete solution to receive the full credit!

1. Is the function $(p \wedge q) \vee r$ equal to the function $p \wedge (q \vee r)$?

2. Convert 101101111111000_2 from binary to hexadecimal.

3. Find the 8-bit two's complement of 65_{10}

4. Show that the Boolean function $(\sim P \land \sim Q) \lor (P \oplus Q)$ equals the Boolean function computed by the following circuit with just two logic gates (NOT and AND):

5. Compute 79 - 43 using base-2 arithmetic.

6. Compute 79-43 using 8-bit two's complement registers. Remember to check for overflow.

7. Design a circuit that represents the Boolean function S where S(P,Q) = 0 if and only if (P,Q) = (1,0).

- 8. A sufficient condition that a triangle T be a right triangle is that $a^2 + b^2 = c^2$. An equivalent statement is:
 - (a) If T is a right triangle then $a^2 + b^2 = c^2$;
 - (b) If $a^2 + b^2 = c^2$ then T is a right triangle;
 - (c) If $a^2 + b^2 \neq c^2$ then T is NOT a right triangle;
 - (d) T is a right triangle only if $a^2 + b^2 = c$.
- 9. Replace the question mark by \langle , \rangle , or =, whichever is correct.
 - (a) $\frac{1}{2}$? $\frac{3}{6}$ (b) $\frac{2}{3}$? 0.666666666667
 - (c) $\sqrt{2}$? $\frac{\sqrt{18}}{3}$
 - (d) e ? 2.71828182
 - (e) $\pi ? \frac{22}{7}$
- 10. Find all common divisors of 252 and 180 using the Euclidean algorithm.