CSCI 3030 Mathematical Structures for Computer Science Instructor: Dr. Predrag Punoševac Section A

Exam 1

Student Name:

\qquad
Student ID\#: \qquad

Each problem is worth 5 points. Give a complete solution to receive the full credit!

1. Is the function $(p \wedge q) \vee r$ equal to the function $p \wedge(q \vee r)$?
2. Convert 1011011111111000_{2} from binary to hexadecimal.
3. Find the 8 -bit two's complement of 65_{10}
4. Show that the Boolean function $(\sim P \wedge \sim Q) \vee(P \oplus Q)$ equals the Boolean function computed by the following circuit with just two logic gates (NOT and AND):

5. Compute $79-43$ using base-2 arithmetic.
6. Compute $79-43$ using 8 -bit two's complement registers. Remember to check for overflow.
7. Design a circuit that represents the Boolean function S where $S(P, Q)=0$ if and only if $(P, Q)=(1,0)$.
8. A sufficient condition that a triangle T be a right triangle is that $a^{2}+b^{2}=c^{2}$. An equivalent statement is:
(a) If T is a right triangle then $a^{2}+b^{2}=c^{2}$;
(b) If $a^{2}+b^{2}=c^{2}$ then T is a right triangle;
(c) If $a^{2}+b^{2} \neq c^{2}$ then T is NOT a right triangle;
(d) T is a right triangle only if $a^{2}+b^{2}=c$.
9. Replace the question mark by $<,>$, or $=$, whichever is correct.
(a) $\frac{1}{2} ? \frac{3}{6}$
(b) $\frac{2}{3} ? 0.6666666667$
(c) $\sqrt{2} ? \frac{\sqrt{18}}{3}$
(d) $e ? 2.71828182$
(e) $\pi ? \frac{22}{7}$
10. Find all common divisors of 252 and 180 using the Euclidean algorithm.
