CSCI 3030 A mathematical Structures for Computer Science

Exam 2

Student Name:

\qquad

Student ID\#:

\qquad

Each problem is worth 5 point. Give a complete solution to receive the full credit!

1. Draw a Venn diagram for $U=\{1,2,3,4,5\}, A=\{1,3,4\}, B=\{3,4,5\}$, and $C=\{2,4\}$. Are sets B and $U \backslash A$ disjoint sets?
2. List partitions of the set $\{1,2\} \times\{a\}$.
3. Let $x \in \mathbb{R}$. The floor function of x, denoted by $f(x)=\lfloor x\rfloor$, is the largest integer less than or equal to x. Show that $\left(f \circ f^{-1}\right)(\{0,1\})=\{0,1\}$. Is the floor function onto function from the set of real numbers into the set of integers?
4. Consider two permutations $f=(2,1,4,3,5)$ (which is given in one line form) and $g=$ $(1,3)(5,2,4)$ (which is given in cycle form) of the set $A=\{1,2,3,4,5\}$. Find permutation $h=\left(f^{-1} \circ g\right) \circ g$ of the set A.
5. Evaluate $\phi(105)$ where $\phi(x)$ is the Euler function.
6. There were N students in a class. Their exam scores ranged between 27 and 94 . All possible scores were achived by at least one student except for the scores 31,42 , and 56 (none of the students got those scores). What is the smallest value of N that guarantees that at least four students achived the same score?
7. If we compute $11^{t} \% 163$ for $t=0,2, \ldots, 161$ we get each of the numbers $1,2, \ldots, 162$ exactly once. Solve the equation $41=11^{t} \% 163$ using your favorite programming language.
8. Using the Euclidean algorithm and your favorite programming language, find A and B such that $A m+B n=\operatorname{gcd}(m, n)$ where $m=1012$ and $n=54$. How many common divisors are there of $m=1012$ and $n=54$? List all common divisors of $m=1012$ and $n=54$.
9. Evaluate Stirling number $S(7,3)$. Let now $A=\{a, b, c, d, e, f, g\}$. How many onto functions are there from the set A to the set $B=\{1,2,3\}$?
10. Let R be a relation of length two on the set $\mathbb{N}_{0} \times \mathbb{N}_{0}$ defined as $(a, b) R(m, n)$ if and only if $a+n=m+b$. Show that relation R is an equivalent relation. How many equivalence classes does it have?
