Exam 1

\qquad
Student ID \#

Each problem is worth 10 points. Give a complete solution to receive the full credit!

1. Replace the question mark by \neq or $=$, whichever is correct.
(a) $\left(-\frac{1}{2}\right)^{-2023} ?-2^{2023}$
(b) $\frac{1}{3^{-1}} ? 0.33333333333$
(c) 0.065 ? 6.5%
(d) $\sqrt{2} ? 1.41$
(e) $\pi ? \frac{22}{7}$
2. Find the domain and the range of the function $f(x)$ whose graph is shown below.

Then plot the graph of the function $g(x)=f(x-1)$ using the grid provided below.

3. Plot complex number $z=1-2 i$ in the complex plane. What is its conjugate number.
4. Find the real values z for which function $f(z)=\sqrt{\frac{(3-z)}{(z-1)}}$ is defined.
5. Find $(f \circ f)(-5)$ for a piecewise function defined as

$$
f(x)= \begin{cases}-3 x-18, & x<-5 \\ 1, & -5 \leq x<1 \\ x+2, & x \geq 1\end{cases}
$$

6. Find the equation of the straight line which is parallel to the given one and goes through the point $(0,2)$.

7. Find real values of x which satisfy the inequality $-3<\frac{1}{2}(x-4)<5$.
8. Let $f(x)=-(x-2023)^{2}-2$.
(a) Find its vertex;
(b) Determine whether it has a maximum or a minimum value;
(c) Find the intervals on which the function is increasing.
9. Solve the inequality $\left|\frac{x-3}{4}\right|>1$. Graph the solution on the number line, and write the solution in interval notation.
10. The graph of the function $g(x)$ is given.

(a) State approximately the domain of the function;
(b) State approximately the range of the function;
(c) State whether the function is odd, even, or neither even nor odd.
