Exam 2

Student Name:

\qquad
Student ID\#: \qquad

Each problem is worth 6 points. Give a complete solution to receive the full credit!

1. Find the zeros of the function $f(x)=x^{3}-9 x$.
2. Find the intervals on which the function $f(x)=x^{3}-9 x$ is positive.
3. Find the intervals on which the function $f(x)=x^{3}-9 x$ is decreasing.
4. Use the second-derivative test to find all relative extreme points of $f(x)=x^{3}-9 x^{2}+24 x$.
5. Find the vertical and horizontal asymptotes of the function $f(x)=\frac{1}{x+51}-2022$.
6. Find the open intervals on which $f(x)=\frac{x}{x^{2}+2}-2022$ is concave downward.
7. Determine the x-coordinates of all inflection points of the function $f(x)=\frac{x}{x^{2}+2}-2022$.
8. Find the domain and the range of the function $f(x)=x+x^{-1}$.
9. Let $f(x)=x^{3}-\frac{3}{2} x^{2}$ on the interval $[-1,2]$. Find the absolute maximum and absolute minimum of $f(x)$ on this interval.
10. Among the following graphs of three different function identify the one:
$\xrightarrow{\text { Profit }}$
(a) representing the function which has the positive first derivative and the negative second derivative;
(b) representing the function which is increasing and concave upwards;
(c) representing the function which looks like it might have one critical number.
