Exam 3

\qquad
Student ID\#:

Each problem is worth 6 points. Give a complete solution to receive the full credit!

1. Which of the following logarithms are defined?
(a) $\ln \log \left(\frac{1}{10}\right)^{-2}$
(b) $\log \sqrt{2}$
2. If $\log _{a} b=8, a>0, a \neq 1, b>0$, find the value of $\log _{a}\left(a b^{2}\right)$.
3. Use implicit differentiation to find $d y / d x$ of the curve $y^{2}-\log x=10$.
4. Find the derivative of the function $y(x)=2^{x}+x^{2}$ with respect to x.
5. Evaluate indefinite integral.

$$
\int\left(\sqrt[3]{x}+e^{\frac{1}{3} x}-\frac{\ln 2}{x}\right) d x
$$

6. Evaluate indefinite integral.

$$
\int \frac{x^{2}-7}{x} d x
$$

7. Use substitution method to find the following integral

$$
\int \frac{\ln ^{4}(z)}{z} d z
$$

8. Evaluate

$$
\frac{d}{d x} \int_{1}^{x} \frac{t^{1}}{t^{2}+4} d t
$$

9. Use integration by parts to evaluate definite integral.

$$
\int_{1}^{3} \log x d x
$$

10. A graph of the affine function $y=-2 x+6$ forms a right triangle with the positive x-axis and positive y-axis. Find the area of that triangle using The Fundamental Theorem of Calculus and then verify your result using area formula $A=\frac{1}{2} b \cdot h$ from plain geometry
