Final Exam

\qquad
Student Name:

Each problem is worth 10 points. Give a complete solution to receive the full credit!

1. Rewrite each of the following as an expression of x which does not involve any logs.
(a) $\log \left(100^{x}\right)$
(b) $10^{-\log (x)}$
2. If $\log _{a} b=8, a>0, a \neq 1, b>0$, find the value of $\log _{a}\left(\frac{a^{17}}{b}\right)$.
3. Find the intervals in which the function $g(x)=\frac{1}{2} x^{2}-\ln (x)$ is decreasing.
4. Use the second-derivative test to find and classify all relative extreme points of the function.

$$
f(x)=-x^{3}+3 x^{2}-4
$$

5. Evaluate indefinite integral.

$$
\int\left(\frac{1}{\sqrt[3]{x}}+3 e^{-\frac{1}{3} x}-\frac{\sqrt{2}}{x}\right) d x
$$

6. Find the average rate of change of the function $f(x)=\log (x)$ on the interval $[1,10]$.
7. Use substitution method to find the following integral

$$
\int \frac{t^{1}}{\sqrt[2]{t^{2}+4}} d t
$$

8. A company that produces tracking devices for computer disk drives finds that if it produces x devices per week, its cost will be $C(x)=180 x+16000$ and its revenue will be $R(x)=-2 x^{2}+660 x$
(a) Find the company's break-even points;
(b) Find the maximum profit.
9. Find the average value of the function $f(x)=\ln (x)$ on the interval [1,3].
10. Among the following graphs of two different function identify the one:

A

B
(a) representing a function which has an inflection point at $x=1$;
(b) representing a function which has a zero at $x=1$;
(c) representing a function which has a local min at $x=0$;
(d) representing a function which is increasing on the interval $[0,2]$.

