Math 1113 C3 Precalculus

Instructor: Dr. Predrag Punoševac

Final Exam

Student Name:_____ Student ID#:_____

Each problem is worth 10 points. Give a $\underline{\text{complete}}$ solution to receive the full credit!

1. Verify trigonometric identity

$$\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}.$$

2. Solve trigonometric inequality $|\sin(t)| > \frac{1}{2}$.

3. Rewrite the expression $\sin(\tan^{-1}(2x) - \sin^{-1}(2x))$ as an algebraic expression in x.

4. Solve the trigonometric equation $5 \tan^3(x) - 5 \tan^2(x) - \tan(x) + 1 = 0$ over the field of real numbers.

5. Solve logarithm equation $\log(x - 10) - \log(3 - x) = 1$ over the field of real numbers.

- 6. Which of the following logarithms are defined?
 - (a) $\log_{0.1}(\log 0.001)$
 - (b) $\log_1 3^{-2012}$
 - (c) $\log_3(\sin 1)$
 - (d) $\log_{10^{-2012}} \pi$
 - (e) $\log_8\left(\cos\frac{\pi}{2}\right)$
- 7. For the triangles shown, find the area of the triangle $\triangle CAD$. Assume BD = CD = 19, $\angle CBD = 30^{\circ}$, and $\angle DCA = 20^{\circ}$.

8. The graph of a sine curve is given below.

- (a) Determine the amplitude of the curve.
- (b) Determine the period of the curve.
- (c) Determine the phase shift of the curve.
- (d) Determine the function in the form $f(x) = a \sin(k(x-b))$.

$$y = \tan(x + \frac{\pi}{2}).$$

is "1-1" on the interval $(0,\pi)$ therefore invertible on its image. Sketch the graph of its inverse function.

10. Find the parameter of the shaded region in the figure where $\alpha = \frac{\pi}{4}$ and b=11.

