Exam 1

Student Name:
 \section*{Student ID\#:}

\qquad
\qquad

Each problem is worth 5 points. Give a complete solution to receive the full credit!

1. Replace the question mark by $<,>$, or $=$, whichever is correct.
(a) $\frac{1}{2} ? \sin \left(\frac{\pi}{6}\right)$
(b) $\frac{1}{3}$? 0.33333333333
(c) $\sqrt[6]{2} ? \sqrt[3]{\frac{\sqrt{18}}{3}}$
(d) $2 ? e^{\ln 2}$
(e) $\pi ? \frac{22}{7}$
2. Consider the table giving values for height and weight of 5 individuals. Determine which

Height	61	63	63	66	64
Weight	146	174	123	126	138

of the following best describes the relationship between height and weight.
(a) Height is a function of weight.
(b) Weight is a function of height.
(c) Height is a function of weight and weight is a function of height.
(d) None of the above.
3. The graph of the function $g(x)$ is given.

(a) State approximately the domain of the function.
(b) State approximately the interval(s) on which $g(x)$ is decreasing.
(c) State approximately $\lim _{x \rightarrow 1} g(x)$.
4. Give an example of a infinite, bounded above, monotone increasing sequence. What is the fifth term of your sequence?
5. Decide whether the sequence $a_{n}=\sqrt[3]{\frac{27 n^{2}+n-6}{n^{2}+16}}, n=1,2,3, \ldots$ converges or diverges. If the sequence converges, find its limit.
6. The function f is defined by

$$
f(x)=\left\{\begin{array}{lr}
3 x-1, & -3 \leq x<0 \\
x^{2}-5, & 0 \leq x<2 \\
1-x, & 2 \leq x \leq 4
\end{array}\right.
$$

Evaluate the limits $\lim _{x \rightarrow 2^{-}} f(x)$ and $\lim _{x \rightarrow 2^{+}} f(x)$. Is the function continuous at the point $x=2$?
7. Let $A=(0,1) \subseteq \mathbb{R}$. Is A a bounded set of the set of real numbers? Give a lower and an upper bound for A. What is the greatest lower bound for A (also known as the infimum)? What is the least upper boud for A (also known as the supremum)?
8. The graphs of f and g are given.

Use them to evaluate $\left.\lim _{x \rightarrow 1^{-}}\left(\frac{f}{g}\right)(x)\right)$ if it exists.
9. Find the

$$
\lim _{x \rightarrow-\infty} \tan ^{-1}(x)
$$

10. Theorem 1 (The Bolzano-Cauchy intermediate-value theorem) If a function that is continuous on a closed interval assumes values with different signs at the endpoints of the interval, then there is a point in the interval where it assumes the value 0 .
Use the Bolzano-Cauchy intermediate-value theorem to show that the equation

$$
\cos (x)-\frac{1}{2} e^{x}=0
$$

has a solution on $[-\pi, 0]$.

