Instructor: Dr. Predrag Punoševac

Exam 1

Student Name:______Student ID#:_____

Each problem is worth 5 points. Give a complete solution to receive the full credit!

- 1. Replace the question mark by \langle , \rangle , or =, whichever is correct.
 - (a) $\frac{1}{2}$? $\sin(\frac{\pi}{6})$
 - (b) $\frac{1}{3}$? 0.333333333333
 - (c) $\sqrt[6]{2}$? $\sqrt[3]{\frac{\sqrt{18}}{3}}$
 - (d) 2 ? $e^{\ln 2}$
 - (e) $\pi ? \frac{22}{7}$
- 2. Consider the table giving values for height and weight of 5 individuals. Determine which

Height	61	63	63	66	64
Weight	146	174	123	126	138

of the following best describes the relationship between height and weight.

- (a) Height is a function of weight.
- (b) Weight is a function of height.
- (c) Height is a function of weight and weight is a function of height.
- (d) None of the above.

3. The graph of the function g(x) is given.

- (a) State approximately the domain of the function.
- (b) State approximately the interval(s) on which g(x) is decreasing.
- (c) State approximately $\lim_{x\to 1} g(x)$.

4. Give an example of a infinite, bounded above, monotone increasing sequence. What is the fifth term of your sequence?

5. Decide whether the sequence $a_n = \sqrt[3]{\frac{27n^2+n-6}{n^2+16}}$, n = 1, 2, 3, ... converges or diverges. If the sequence converges, find its limit.

6. The function f is defined by

$$f(x) = \begin{cases} 3x - 1, \ -3 \le x < 0\\ x^2 - 5, \ 0 \le x < 2\\ 1 - x, \ 2 \le x \le 4 \end{cases}$$

Evaluate the limits $\lim_{x\to 2^-} f(x)$ and $\lim_{x\to 2^+} f(x)$. Is the function continuous at the point x = 2?

7. Let $A = (0, 1) \subseteq \mathbb{R}$. Is A a bounded set of the set of real numbers? Give a lower and an upper bound for A. What is the greatest lower bound for A (also known as the infimum)? What is the least upper boud for A (also known as the supremum)?

8. The graphs of f and g are given.

Use them to evaluate $\lim_{x\to 1^-} (\frac{f}{g})(x)$ if it exists.

9. Find the

 $\lim_{x \to -\infty} \tan^{-1}(x).$

10. Theorem 1 (The Bolzano-Cauchy intermediate-value theorem) If a function that is continuous on a closed interval assumes values with different signs at the endpoints of the interval, then there is a point in the interval where it assumes the value 0.

Use the Bolzano-Cauchy intermediate-value theorem to show that the equation

$$\cos(x) - \frac{1}{2}e^x = 0$$

has a solution on $[-\pi, 0]$.