Exam 2

Student Name:

\qquad

Student ID\#:

Each problem is worth 5 points. Give a complete solution to receive the full credit!

1. Decide whether the sequence $a_{n}=\cos (\pi n), n=1,2,3, \ldots$ converges or diverges. If the sequence converges, find its limit.
2. The function f is defined by

$$
f(x)= \begin{cases}x^{2}-a, & 0 \leq x<2 \\ 7-2 x, & 2 \leq x \leq 4\end{cases}
$$

where a is a parameter. Find its value so that the function is continuous at the point $x=2$.
3. Using the definition, find the derivative of the function $h(t)=\sqrt{t+1}$ at the point $t=1$.
4. Find the best affine approximation of the function $g(z)=\log _{3} z$ at the point $z=5$. Use it to approximate $\log _{3} 5.2$. What is the difference between the approximate value and the "true" value obtained by a calculator?
5. Determine the domain of the function $f(x)=\sqrt{(x-5)^{2}}$ and then find the points at which the function fails to be differentiable. Is the function continuous in those points?
6. Find the derivatives of the following functions.
(a) $f(x)=\left(\frac{1}{x}-3\right) \frac{x^{2}+3}{2 x-1}$
(b) $g(x)=2^{x}-\log _{5}(x)+5 \tan (x)$
7. Find the derivatives of the following functions.
(a) $f(x)=\left(\frac{1}{x}-3\right)^{3}$
(b) $g(x)=2^{-\sin (x)}-\log _{5}(\tan (x))$
8. Find the coordinates of the two points on the closed curve $x^{2}-2 x+4 y^{2}+16 y+1=0$ where the line tangent to the curve is vertical.
9. Let $g(x)$ be a function defined as $g(x)=\frac{4 x}{1+4 x^{2}}$ for all $x>0$. Find the absolute maximum value of g on the open interval $(0, \infty)$ if the maximum exists. Find the point(s) in which absolute minimum value of g is attained on the open interval $(0, \infty)$ if the minimum exists.
10. Theorem 1 (Lagrange's finite-increment theorem). If a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous on a closed interval $[a, b]$ and differentiable on the open interval (a, b), there exists a point $\xi \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(\xi)(b-a)
$$

Use Lagrange's finite-increment theorem to solve the following problem. Suppose that we know that $f(x)$ is continuous and differentiable on $[6,15]$. Let's also suppose that we know that $f(6)=-2$ and that we know that $f^{\prime}(x) \leq 10$. What is the largest possible value for $f(15)$?

