Exam 3

Student Name:

Student ID\#:

Each problem is worth 5 points. Give a complete solution to receive the full credit!

1. Evaluate $\int\left(3 z-\frac{4}{z^{2}}\right) d z$.
2. Evaluate $\int\left(\cos (\theta)-\frac{2}{\theta}+2^{\theta}\right) d \theta$.
3. Evaluate $\int\left(\cos (\theta+3)-2^{\theta+5}\right) d \theta$.
4. Evaluate $\int \theta^{2} \sin (\theta) d \theta$.
5. Evaluate $\int_{\pi}^{\pi} \sin ^{6}(x) \cos ^{6}(x) d x$.
6. Evaluate the integral $\int_{-1}^{2}(x-8|x|) d x$.
7. Find the right hand Riemann sum that approximates the area under the curve

$$
f(x)=\sqrt{x} \sin (x)
$$

and above the interval $[0,10]$ as shown in the figure.

8. Let $f(x)$ be the characteristic function of the set \mathbb{Q} of rational numbers restricted to the closed interval $[0,1]$.

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Let $\mathcal{P}=(0,0.5,1)$ be a regular partition of $[0,1]$. Write the upper $U_{f, \mathcal{P}}$ and lower $L_{f, \mathcal{P}}$ Darboux sum of function $f(x)$ with respect to \mathcal{P}. Evaluate $U_{f, \mathcal{P}}-L_{f, \mathcal{P}}$. Let $\mathcal{P}^{\prime}=$ $(0,0.25,0.5,0.75,1)$ be a refinement of partition \mathcal{P} obtained by cutting the subintervals into smaller pieces. Write the upper $U_{f, \mathcal{P}^{\prime}}$ and lower $L_{f, \mathcal{P}^{\prime}}$ Darboux sum. Evaluate $U_{f, \mathcal{P}^{\prime}}-L_{f, \mathcal{P}^{\prime}}$.
9. Let g be the continuous function defined on $[3,2)$ whose graph, consisting of three line segments and a semicircle centered at the origin, is given below. Let f be the function given by $f(x)=\int_{1}^{x} g(t) d t$.

(a) Find the values of $f(2)$ and $f(-2)$.
(b) For each of $f^{\prime}(-1)$ and $f^{\prime \prime}(-1)$, find the value or state that it does not exist.
10. The graph of the differentiable function $y=f(x)$ with domain $0 \leq x \leq 6$ is shown on the figure. The area of the region enclosed between the graph of f and the x-axis for $0 \leq x \leq 2$ is 1.8 , and the area of the region enclosed between the graph of f and the x-axis for $2 \leq x \leq 6$ is 11 .

(a) Evaluate $\int_{0}^{6}(3 f(x)+2) d x$. Show the computations that lead to your answer.
(b) Let $g(x)=\int_{2}^{x} f(t) d t$. On what intervals, if any, is the graph of g both concave up and decreasing? Explain your reasoning.

