Final Exam

Student Name:

\qquad

Student ID\#:

\qquad
Each problem is worth 10 points. Give a complete solution to receive the full credit!

1. The graph of the function $g(x)$ is given.

(a) State approximately the domain of the function.
(b) State approximately the interval(s) on which $g(x)$ is decreasing.
(c) State approximately critical points.
2. Write $5^{\text {th }}$ term of the sequence $a_{n}=\frac{27 n^{2}+n-6}{n^{2}+16}, n=1,2,3, \ldots$. Decide if the sequence is converges or diverges. If the sequence converges decide if it is bounded or unbounded.
3. The graphs of f and g are given.

Use them to evaluate $\lim _{x \rightarrow 1^{+}}(f+g)(x)$ if it exists.
4. The function f is defined by

$$
f(x)=\left\{\begin{array}{lrl}
\cosh x-a, & -2 & \leq x<0 \\
7-2 x, & 0 & \leq x \leq 4
\end{array}\right.
$$

where a is a parameter. Find its value so that the function is continuous at the point $x=0$.
5. Find the best affine approximation of the function $g(z)=\sqrt[3]{1+z}$ at the point $z=0$. Use it to approximate $\sqrt[3]{1.1}$. What is the difference between the approximate value and the "true" value obtained by a calculator?
6. Find the coordinates of the two points on the closed curve $x^{2}-2 x+4 y^{2}+16 y+1=0$ where the line tangent to the curve is perpendicular to the line $y=\frac{1}{2} x-3$
7. Evaluate the integral $\int_{-1}^{2}\left(\frac{1}{1+x^{2}}-8 \sqrt{x^{2}}\right) d x$.
8. Evaluate
(a) $\int(1+\tan \theta)^{6} \sec ^{2} \theta d \theta$.
(b) $\int \theta^{2} \sinh (\theta) d \theta$.

9 . Let g be the continuous function defined on $[3,2)$ whose graph, consisting of three line segments and a semiellipse centered at the origin, is given below. Let f be the function given by $f(x)=\int_{1}^{x} g(t) d t$.

(a) Find the values of $f(2)$ and $f(-2)$.
(b) For each of $f^{\prime}(-1)$ and $f^{\prime \prime}(-1)$, find the value or state that it does not exist.
10. Find the limit.

$$
\lim _{x \rightarrow \infty} \frac{\cosh (x)}{e^{x}}
$$

