Exam 1

Student Name: \qquad Student ID\#:

Each problem is worth 5 points. Give a complete solution to receive the full credit!

1. Determine whether the sequence $a_{n}=\ln (n+1)-\ln (n)$ converges or diverges. If it converges, find its limit.
2. Write $5^{\text {th }}$ term of the sequence $a_{n}=\frac{\arctan (n)}{n}, n=1,2,3, \ldots$. Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?
3. What is the sum of the infinite geometric series $2+0.5+0.125+0.03125+\ldots$?
4. Investigate the behavior (convergence or divergence) of $\sum_{n=1}^{\infty} a_{n}$ if $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$.
5. Decide if the series $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$ is convergent or divergent by telescoping.
6. Show that if $a_{n}>0$ and $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\sum_{n=1}^{\infty} \ln \left(1+a_{n}\right)$ is also convergent.
7. Determine if the series $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n^{2}}$ is absolutely convergent, conditionally convergent, or divergent.
8. Evaluate indefinite integral $\int \frac{\cos (\pi / x)}{x^{2}} d x$.
9. Evaluate $\int_{1}^{\infty} \frac{\ln (x)}{x^{p}} d x$ for $p>1$.
10. Find the derivatives of the following functions.
(a) $f(x)=\left(\log _{5}(\arctan (x))+2^{x}\right)^{3}$
(b) $g(x)=2^{-\cosh (x)}-\log _{5}\left(\frac{1}{x}\right)$
