
Math 2012 C Calculus and Analytic Geometry II Instructor: Dr. Predrag Punoševac

Exam 2

Student Name:

Student ID#:

Each problem is worth 5 point. Give a complete solution to receive the full credit!

1. Find the domain of the Bessel function of order 0 defined by

J0 =

∞
∑

n=0

(−1)nx2n

22n(n!)2
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2. Show that J0 (the Bessel function of order 0) satisfies the differential equation

x2J ′′
0 (x) + xJ ′

0(x) + x2J0 = 0
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3. Evaluate
∫ 1

0
J0(x)dx to two decimal places. Note that J0(x) stands for the Bessel function

of order 0 as before.
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4. Evaluate the indefinite integral
∫

e
x−1
x

dx as an infinite series.
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5. Evaluate the limit.

lim
x→0

tan(x)− x

x3
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6. Use division of power series to find the first three nonzero terms in the Maclaurin series
for y = sec(x).
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7. Use the series to approximate 1√
2π

∫ 1

0
e−

x
2

2 dx to two decimal places. In statistics the 68-
95-99.7 rule or three-sigma rule states that for a normal distribution, nearly all values lie
within 3 standard deviations of the mean. According to that rule if the random variable

X ∼ N(0, 1) then P (−1 < X < 1) = 1√
2π

∫ 1

−1
e−

x
2

2 dx ≈ 0.68. Use your computation to
prove three-sigma rule for the case of 1 standard deviation.
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8. Evaluate indefinite integral

∫

et sin(t) dt.
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9. Evaluate the integral if it is convergent.

∫ 1

0

ln(x)
√
x

dx
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10. Find the derivatives of the following functions.

(a) f(x) =
(

log5 (arcsin(x)) +
∫

x

2
e−t

2

dt
)3

(b) g(x) = 2− log5(
1

x
) +

∫

x
2

1
sin(ln(t)) dt
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