Exam 2

Student Name:

Student ID\#:

Each problem is worth 5 point. Give a complete solution to receive the full credit!

1. Find the domain of the Bessel function of order 0 defined by

$$
J_{0}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}
$$

2. Show that J_{0} (the Bessel function of order 0) satisfies the differential equation

$$
x^{2} J_{0}^{\prime \prime}(x)+x J_{0}^{\prime}(x)+x^{2} J_{0}=0
$$

3. Evaluate $\int_{0}^{1} J_{0}(x) d x$ to two decimal places. Note that $J_{0}(x)$ stands for the Bessel function of order 0 as before.
4. Evaluate the indefinite integral $\int \frac{e^{x}-1}{x} d x$ as an infinite series.
5. Evaluate the limit.

$$
\lim _{x \rightarrow 0} \frac{\tan (x)-x}{x^{3}}
$$

6. Use division of power series to find the first three nonzero terms in the Maclaurin series for $y=\sec (x)$.
7. Use the series to approximate $\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} e^{-\frac{x^{2}}{2}} d x$ to two decimal places. In statistics the 68 -95-99.7 rule or three-sigma rule states that for a normal distribution, nearly all values lie within 3 standard deviations of the mean. According to that rule if the random variable $X \sim N(0,1)$ then $P(-1<X<1)=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} e^{-\frac{x^{2}}{2}} d x \approx 0.68$. Use your computation to prove three-sigma rule for the case of 1 standard deviation.
8. Evaluate indefinite integral $\int e^{t} \sin (t) d t$.
9. Evaluate the integral if it is convergent.

$$
\int_{0}^{1} \frac{\ln (x)}{\sqrt{x}} d x
$$

10. Find the derivatives of the following functions.
(a) $f(x)=\left(\log _{5}(\arcsin (x))+\int_{2}^{x} e^{-t^{2}} d t\right)^{3}$
(b) $g(x)=2^{-\log _{5}\left(\frac{1}{x}\right)}+\int_{1}^{x^{2}} \sin (\ln (t)) d t$
