Exam 3

Student Name: \qquad Student ID\#:

Each problem is worth 5 point. Give a complete solution to receive the full credit!

1. First use substitution and then use integration by parts to evaluate the integral $\int \sin (\sqrt{x}) d x$.
2. Evaluate the integral $\int \frac{\sqrt{x^{2}-9}}{x^{3}} d x$ using trigonometric substitution.
3. Evaluate the integral $\int_{0}^{1} \frac{2 x+3}{(x+1)^{2}} d x$.
4. Determine if the integral $\int_{-\infty}^{6} x e^{\frac{x}{3}} d x$ is convergent or divergent. If it is convergent evaluate it.
5. Use the Comparasion Theorem to determine whether the integral $\int_{0}^{\infty} \frac{\arctan (x)}{2+e^{x}} d x$ is convergent or divergent.
6. Find the area enclosed by the curves $y=\cos (\pi x)$ and $y=4 x^{2}-1$.
7. Find the volume of the solid obtained by rotating the region bounded by the curves $y=1+\sec (x)$ and $y=3$ about the $y=1$.
8. The region bounded by the curve $x=y^{2}+1$ and $x=2$ is rotated about the $y=-2$. Find the volume of the resulting solid.
9. The curve $x=1+2 y^{2}, 1 \leq y \leq 2$ is rotated about the x-axis. Find the exact area of the surface obtained.
10. Find y^{\prime} if $\cosh (x+y)=y^{2} \sinh (x)$.
