Final Exam

Student Name:

Student ID\#:

Each problem is worth 10 point. Give a complete solution to receive the full credit!

1. First use substitution and then use integration by parts to evaluate the integral $\int \ln (\sqrt{x}) d x$.
2. Find the power series representation of the function $f(x)=x^{2} \tan ^{-1}\left(x^{3}\right)$ and determine the radius of convergence.
3. Evaluate the integral $\int_{1}^{3} \frac{2 x+3}{(x+1)(x+2)} d x$.
4. Determine whether the sequence $a_{n}=\frac{\cosh (n)}{n}$ converges or diverges. If it converges, find the limit.
5. Use the Comparasion Theorem to determine whether the integral $\int_{1}^{\infty} \frac{2+e^{-x}}{x} d x$ is convergent or divergent.
6. Determine if the series $\sum_{n=0}^{\infty} \frac{1+\sin (n)}{10^{n}}$ is convergent or divergent.
7. The curve $y=\frac{1}{4} x^{2}-\frac{1}{2} \ln (x), 1 \leq x \leq 2$ is rotated about y-axis. Find the area of the resulting surface.
8. The region bounded by the curve $y=\ln (x), y=1, y=2$, and $x=0$ is rotated about the $y=0$. Find the volume of the resulting solid.
9. Find the exact length of the curve $x=3 \cos (t)-\cos (3 t), y=3 \sin (t)-\sin (3 t), 0 \leq t \leq \pi$.
10. Find the area of the region enclosed by one loop of the curve $r^{2}=\sin (2 \theta)$.
