Preliminary Exam

Student Name:______ Student ID#:

Each problem is worth 2 points. Give a complete solution to receive the full credit!

1. The graph of the function g(x) is given.

- (a) Is function g(x) differentiable or not on the interval (-1.8, 1.4).
- (b) State approximately the interval(s) on which g(x) is concave upward.
- (c) Find approximately maximum and minimum values of the function g(x).

2. Write 7th term of the sequence $a_n = (-1)^n \frac{n^2-6}{n^2+16}$, n = 1, 2, 3, ... Decide if the sequence is converges or diverges. Is it bounded or unbounded?

3. The graphs of f and g are given.

Use them to evaluate $\lim_{x \to 1^-} (f * g)(x)$ if it exists.

4. The function f is defined by

$$f(x) = \begin{cases} \sinh x - a, & -2 \le x < 0\\ 7 - 2\sin(x), & 0 \le x \le 4 \end{cases}$$

where a is a parameter. Find its value so that the function is continuous at the point x = 0.

5. Find the best affine approximation of the function $g(z) = \log_5(1+z)$ at the point z = 0. Use it to approximate $\log_5 1.1$. What is the difference between the approximate value and the "true" value obtained by a calculator?

- 6. Which of the following logarithms are defined?
 - (a) $\log_{0.1}(\ln 100000000)$
 - (b) $\ln(\log(10^{-7}))$
 - (c) $\log_{2012}(3.141592653589793 \pi)$
 - (d) $\log_1 2$
 - (e) $\log_{11} 0$
- 7. Evaluate the integral $\int_{-1}^{2} \left(\frac{1}{1-x^2} 8\sqrt[3]{x^2}\right) dx.$

8. Evaluate

(a)
$$\int (1 - \cot \theta)^6 \csc^2 \theta \ d\theta$$
.
(b) $\int (\theta^2 - 1) \cosh(\theta) \ d\theta$.

9. Let g be the continuous function defined on [3, 2) whose graph, consisting of three line segments and a semiellipse centered at the origin, is given below. Let f be the function given by $f(x) = \int_1^x g(t) dt$.

- (a) Find the values of f(2) and f(-2).
- (b) For each of f'(-1) and f''(-1), find the value or state that it does not exist.

- 10. Find the derivatives of the following functions.
 - (a) $f(x) = \left(\arctan\left(\frac{1}{x}\right) 3\right)^3$ (b) $g(x) = 2^{-\sinh(x)} - \log_5(\ln(x))$