Exam 1

Student Name:

\qquad

Student ID\#:

\qquad

Each problem is worth 5 points. Give a complete solution to receive the full credit!

1. Compute the value of $\sqrt{4.01}$ without calculator using the best linear approximation of the function $f(x)=\sqrt{x}$ around the point 4 .
2. Decide whether the function $y(x)=\frac{1}{1+x^{2}}$ is a solution of the differential equation:

$$
y^{\prime}+2 x y^{2}=0 .
$$

3. By applying the theorem about the local existence and uniqueness of the solutions of ordinary differential equations verify if the differential equation

$$
\frac{d x}{d t}=x e^{t}
$$

has a unique solution satisfying the prescribed initial condition $x(0)=2 e$.
4. The slope field of the differential equation $\frac{d y}{d x}=x+y$ is provided below together with one solution curve. Sketch likely solution curves through the additional points marked in the slope field.

5. Sketch the slope field for the differential equation

$$
\dot{x}=t+x
$$

6. Find the general solution of the homogeneous linear differential equation of the first order:

$$
y^{\prime}+y \tan x=0 .
$$

7. Find the constants A and B such that $y_{p}=A \sin x+B \cos x$ is a solution of the differential equation:

$$
\frac{d y}{d x}+y=2 \sin x .
$$

8. Solve the initial value problem

$$
\frac{d y}{d x}+y=2 \sin x, \quad y(0)=1
$$

9. Verify if the differential equation

$$
(2 x+3 y) d x+(3 x+2 y) d y=0
$$

is exact.
10. Find the general solution of the differential equation

$$
y^{\prime}=\sqrt{x+y}
$$

by any method you know (Hint: Substitution).

