Math 3280 Linear Algebra
Section A

## Exam 1

## Student Name:

$\qquad$
Student ID\#: $\qquad$

Each problem is worth 5 points. Give a complete solution to receive the full credit!

1. Show that $n^{2}>2 n$ for $n \geq 3$.
2. Determine if the matrix is singular on non-singular.

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

3. Is the vector $\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$ in the set generated by $\left\{\left(\begin{array}{l}2 \\ 4 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 7 \\ 3\end{array}\right)\right\}$.
4. Solve the system

$$
\begin{aligned}
a+2 b+3 c+d-e & =1 \\
3 a-b+c+d+e & =3
\end{aligned}
$$

Give the solution in the form of the sum of a particular solution and the solution of the homogeneous part.
5. Represent the vector

$$
\binom{1}{2}
$$

with respect to the basis

$$
B=\left\langle\binom{ 1}{1},\binom{-1}{1}\right\rangle \subseteq \mathbb{R}^{2} .
$$

6. Decide if the matrices are raw equivalent.

$$
\left(\begin{array}{lll}
1 & 1 & 3 \\
0 & 0 & 3
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & -1 & 1
\end{array}\right)
$$

7. Prove that the set $\mathbb{R}^{2}$ is a vector space if the operations "+" and "." have their usual meaning i.e.

$$
\binom{x_{1}}{x_{2}}+\binom{y_{1}}{y_{2}}=\binom{x_{1}+y_{1}}{x_{2}+y_{2}}, \quad \lambda \cdot\binom{x_{1}}{x_{2}}=\binom{\lambda \cdot x_{1}}{\lambda \cdot x_{2}}
$$

8. What is the dimension of the span of the set $\left\{\cos ^{2} \theta, \sin ^{2} \theta, \cos 2 \theta, \sin 2 \theta\right\}$
9. Show that any set of four vectors in $\mathbb{R}^{2}$ is linearly dependent.
10. Find one vector $\vec{v}$ that will make $\left\langle x, 1+x^{2}, \vec{v}\right\rangle$ into a basis for the space $\mathbb{P}_{2}$.
