Math 3280 Linear Algebra
Section A

Exam 2

Student Name:

\qquad
Student ID\#: \qquad

Each problem is worth 5 points. Give a complete solution to receive the full credit!

1. Find a basis for the row space of the following matrix.

$$
\left(\begin{array}{rrrr}
2 & 0 & 3 & 4 \\
3 & 4 & 0 & 2 \\
1 & 1 & -4 & -2
\end{array}\right)
$$

2. Decide if the vector $(0,0,1)^{T}$ is in the column space of the matrix.

$$
\left(\begin{array}{rrr}
1 & 3 & 1 \\
2 & 0 & 4 \\
1 & -3 & 3
\end{array}\right)
$$

3. Is the vector $\left(\begin{array}{r}1 \\ -3 \\ 1\end{array}\right)$ in the set generated by $\left\{\left(\begin{array}{l}2 \\ 4 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 7 \\ 3\end{array}\right)\right\}$.
4. Determine whether the vectors $\left\{1+x, 1-2 x, x-x^{3}\right\}$ are linearly independent in \mathcal{P}_{3}.
5. Decide if the matrices are equivalent.

$$
\left(\begin{array}{lll}
1 & 1 & 3 \\
0 & 1 & 3
\end{array}\right) \quad\left(\begin{array}{rrr}
0 & 1 & 2 \\
1 & -2 & 1
\end{array}\right)
$$

6. For a linear map from \mathcal{P}_{2} to \mathcal{P}_{3} that sends

$$
1 \mapsto 1+x, x \mapsto 1-2 x, \text { and } x^{2} \mapsto x+x^{3}
$$

where does $1-3 x+2 x^{2}$ go?
7. For a linear map from \mathcal{P}_{2} to \mathcal{P}_{3} that sends

$$
1 \mapsto 1+x, x \mapsto 1-2 x, \text { and } x^{2} \mapsto x+x^{3}
$$

find the matrix representation with respect to standard basis for vector spaces \mathcal{P}_{2} and \mathcal{P}_{3}.
8. Show that $\vec{u}_{1}=1+x, \vec{u}_{2}=1-2 x$, and $\vec{u}_{3}=x^{2}$ is a base for \mathcal{P}_{2}.
9. Find the transition matrix corresponding to the change of basis from the standard basis of the vector space \mathcal{P}_{2} to $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ defined in the previous problem.
10. For a linear map from \mathcal{P}_{2} to \mathcal{P}_{3} that sends

$$
1 \mapsto 1+x, x \mapsto 1-2 x, \text { and } x^{2} \mapsto x+x^{3}
$$

find the matrix representation with respect to standard basis for vector spaces \mathcal{P}_{3} and the basis $\vec{u}_{1}=1+x, \vec{u}_{2}=1-2 x$, and $\vec{u}_{3}=x^{2}$ of the space \mathcal{P}_{2}.

