$\begin{array}{c} Math \ 3280 \ {}_{\rm Linear \ Algebra} \\ Section \ A \end{array}$

Instructor: Dr. Predrag Punoševac

Exam 2

Student Name:_____ Student ID#:_____

Each problem is worth 5 points. Give a $\underline{\text{complete}}$ solution to receive the full credit!

1. Find a basis for the row space of the following matrix.

2. Decide if the vector $(0, 0, 1)^T$ is in the column space of the matrix.

$$\left(\begin{array}{rrrrr}
1 & 3 & 1 \\
2 & 0 & 4 \\
1 & -3 & 3
\end{array}\right)$$

3. Is the vector
$$\begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix}$$
 in the set generated by $\left\{ \begin{pmatrix} 2\\ 4\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ 7\\ 3 \end{pmatrix} \right\}$.

4. Determine whether the vectors $\{1 + x, 1 - 2x, x - x^3\}$ are linearly independent in \mathcal{P}_3 .

5. Decide if the matrices are equivalent.

$$\left(\begin{array}{rrrr}1&1&3\\0&1&3\end{array}\right)\qquad \left(\begin{array}{rrrr}0&1&2\\1&-2&1\end{array}\right)$$

6. For a linear map from \mathcal{P}_2 to \mathcal{P}_3 that sends

$$1 \mapsto 1 + x, x \mapsto 1 - 2x$$
, and $x^2 \mapsto x + x^3$

where does $1 - 3x + 2x^2$ go?

7. For a linear map from \mathcal{P}_2 to \mathcal{P}_3 that sends

$$1 \mapsto 1 + x, x \mapsto 1 - 2x$$
, and $x^2 \mapsto x + x^3$

find the matrix representation with respect to standard basis for vector spaces \mathcal{P}_2 and \mathcal{P}_3 .

8. Show that $\vec{u}_1 = 1 + x$, $\vec{u}_2 = 1 - 2x$, and $\vec{u}_3 = x^2$ is a base for \mathcal{P}_2 .

9. Find the transition matrix corresponding to the change of basis from the standard basis of the vector space \mathcal{P}_2 to $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ defined in the previous problem. 10. For a linear map from \mathcal{P}_2 to \mathcal{P}_3 that sends

$$1 \mapsto 1 + x, x \mapsto 1 - 2x$$
, and $x^2 \mapsto x + x^3$

find the matrix representation with respect to standard basis for vector spaces \mathcal{P}_3 and the basis $\vec{u}_1 = 1 + x$, $\vec{u}_2 = 1 - 2x$, and $\vec{u}_3 = x^2$ of the space \mathcal{P}_2 .