Math 3280 Linear Algebra
Section A

Final Exam

Student Name:

\qquad
Student ID\#: \qquad

Each problem is worth 10 points. Give a complete solution to receive the full credit!

1. A complex number is an expression of the form $x+y i$ where x and y are real numbers and i is the imaginary unit, satisfying $i^{2}=-1$. One defines addition of complex numbers as

$$
\left(x_{1}+y_{1} i\right)+\left(x_{2}+y_{2} i\right)=\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) i
$$

and multiplication of complex numbers by real numbers as

$$
\lambda\left(x_{1}+y_{1} i\right)=\lambda x_{1}+\lambda y_{1} i .
$$

Prove that the set of all complex numbers denoted as \mathbb{C} is a vector space over the field of real numbers \mathbb{R}
2. Show that the complex numbers $1+2 i$ and $2-i$ form a base for the vector space \mathbb{C} of all complex numbers.
3. The complex conjugate of a complex number $z=x+y i$ is defined to be

$$
\bar{z}=x-y i .
$$

It is trivial to prove that complex conjugation is a linear mapping of \mathbb{C} into itself i.e.

$$
\begin{aligned}
\overline{\left(x_{1}+y_{1} i\right)}+\overline{\left(x_{2}+y_{2} i\right)} & =\overline{\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right) i} \\
\overline{\lambda\left(x_{1}+y_{1} i\right)} & =\lambda \overline{\left(x_{1}+y_{1} i\right)}
\end{aligned}
$$

Give a matrix representation of the conjugation of complex numbers with respect to the standard base of $\langle(1+0 i),(0+1 i)\rangle$ of \mathbb{C}.
4. Compute the row reduced echelon form of the matrix

$$
\left(\begin{array}{rr|rr}
1 & 2 & 1 & 2 \\
2 & -1 & -2 & 1
\end{array}\right) .
$$

Give the matrix representation of the conjugation of complex numbers with respect to the standard base of $\langle(1+2 i),(2-1 i)\rangle$ of \mathbb{C}.
5. Show that conjugation of complex numbers is an automorphism of the vector space \mathbb{C}. [Hint: What is the Kernel space of the conjugation?]

Definition 1 The matrices T and S are similar if there is a nonsingular matrix P such that $T=P S P^{-1}$.
6. Prove that similarity preserves determinants.

Definition 2 An endomorphism/automorphism of vector spaces is diagonalizable if it has a diagonal representation.
7. Diagonalize

$$
A=\left(\begin{array}{rr}
-0.6 & 0.8 \\
0.8 & 0.6
\end{array}\right)
$$

and then compute A^{2012}.
8. Find the characteristic polynomial and the eigenvalues of the matrix.

$$
M=\left(\begin{array}{rr}
3 & 1 \\
-1 & 1
\end{array}\right)
$$

Theorem 1 (Cayley-Hamilton) The minimal polynomial of an endomorphism divides characteristic polynomial of the same endomorphism.
9. Find the minimal polynomial of the matrix.

$$
M=\left(\begin{array}{rr}
3 & 1 \\
-1 & 1
\end{array}\right)
$$

10. Find the Jordan form and a Jordan basis of the matrix

$$
M=\left(\begin{array}{rr}
3 & 1 \\
-1 & 1
\end{array}\right)
$$

